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--------------------------------------------------------ABSTRACT------------------------------------------------------------- 

Software defects are very predominant especially in large software these days because programmers do not take 

the pain to properly debug and test their software before releasing them to customers and users. When these 

software are put into use, the defects manifest themselves especially if they are dormant or inactive at the time 

the software is being developed. As a result, they do cause errors and eventually failure if not quickly handled 

thereby causing serious damages in terms of human and material loss. This paper proposed the Bayesian 

network model for predicting software defects. In the model, certain software inputs are tested to determine the 

number of defects in them. Therefore, our program which is developed in Java programming language is able to 

count the number of inputs and outputs using certain parameters and expressions. This is possible when we 

input query into the network. The program is able to determine that a query has been supplied, the query type, 

the various events that takes place at each stage of the query determination, the choices made and the 

probability of defects being found or not being found in the software.  
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I. INTRODUCTION 
There has been a huge growth in the demand for quality and reliable software in recent times. As a result, issues 

relating to software testing, software quality and software reliability are at the forefront when discussing issues 

relating to software [1]. These issues are increasingly becoming more critical among software engineers, 

developers, and users of the software. The ability to determine and measure software defects are extremely 

important to ensure cost minimization and also help in improving the overall quality and reliability of such 

software. As noted in Schull et al. [2], finding and fixing a severe software problem after delivery is often 100 

times more expensive than finding and fixing it during the requirements and design phase. Therefore, it is 

always easier and less expensive to be able to detect and/or predict software defects at the early stage of 

software development [3].  

Software defects [4] -- [6] are very predominant especially in large software these days because programmers do 

not take the pain to properly debug and test their software before releasing them to customers and users. When 

these software are put into use, the defects manifest themselves especially if they are dormant or inactive at the 

time the software is being developed. As a result, they often cause errors and eventually failure if not quickly 

handled thereby causing serious damages in terms of human and material loss. Software defects are faults or 

bugs introduced into software intentionally or unintentionally by the software developer(s) when the software is 

being developed. Quinlan and Panas [7] define software defects as faults that are introduced unintentionally into 

computer programs, preventing them from behaving correctly. Software defects pose serious problems during 

development and after delivery to users [8] [9]. There is hardly any piece of software that is free of errors or 

defects no matter how small it is especially when it is first developed.  

Software complexity is a major cause of software defects [10]. As software complexity increases, so does the 

likelihood of more defects or bugs in the software. Software complexity [11] -- [13] causes more errors to be 

introduced to the software. Large software projects are more likely to have more defects due to their 

complexities. Therefore, it is necessary to do everything humanly possible to minimize them drastically at each 

stage of the development process instead of trying to fix the software after development or during post-delivery 

stage. It is often better to find and fix defects during development than after delivery. Better still, finding and 

fixing bugs at each stage of the developmental process is even for cheaper than after development or after 

delivery. Therefore, early verification and validation of software is to ensure that software defects are found and 

fixed earlier in software development life cycle.  

This paper proposed the Bayesian network model for predicting software defects. In the model, certain software 

inputs are tested to determine the number of defects in them. Therefore, our program which is developed in Java 

programming language is able to count the number of inputs and outputs using certain parameters and 
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expressions. This is possible when we input query into the network. The program is able to determine that a 

query has been supplied, the query type, the various events that takes place at each stage of the query 

determination, the choices made and the probability of defects being found or not being found in the software. It 

paper also determines the probability of avoiding defects during software development which depends on the 

defect in given total potential defects which represents the number of defects before testing that are in the new 

code that has been implemented. This number is used to determine the probability of finding defect in the code 

which therefore determines the number of defects found in the software.  
 

II. RELATED WORK 
Liu et al. [14] proposed a model that builds Bayesian Network that represents a probability distribution of each 

factor and how they affect defects, considering strong or weak correlations exists between individual metric 

attributes. The model was compared with other models and it produces statically significant estimations. Fenton 

et al. [15] proposed a Bayesian network approach for predicting the number of residual defects that are likely to 

be found during independent testing or operational usage.   

Radhinski and Hoffmann [16] carried out a comprehensive study on software development prediction by 

comparing 23 classifiers in WEKA over four public datasets. They analyzes the accuracy of predictions for 

software. Development effort using different machine learning techniques based on the stability of the 

predictions. They tried to find out if particular techniques achieve similar level of accuracy using different 

datasets. Two assumptions were drawn from the work: (1) predictions are performed using local empirical data, 

and (2) predictions are performed using local empirical data and very little expert input is required. They used 

23 machine learning techniques with four publicly available datasets: COCOMO, Desharnais, Maxwell, and 

QQDefects. 

Mendes and Mosley [17] compared several Bayesian network models for Web effort estimation using a cross-

company dataset. They developed eight Bayesian networks, which were divided into two groups. Four of them 

were built using Hugin and PowerSoft tools with two training sets, each with 130 Web projects while the other 

four were built using a causal graph based on domain expert. Using a benchmark, the BN-based estimates were 

also compared to estimates obtained using manual stepwise regression (MSWR), case-based reasoning (CBR), 

mean-and-median-based effort models. The result shows that better performance are obtained when simpler 

models such as median effort as opposed to complex models such as MSWR. 
 

III. METHODOLOGY 
In the model, certain software inputs are tested to determine the number of defects in them. Therefore, our 

program which is developed in Java programming language is able to count the number of inputs and outputs 

using certain parameters and expressions. This is possible when we input query into the network. The program 

is able to determine that a query has been supplied, the query type, the various events that takes place at each 

stage of the query determination, the choices made and the probability of defects being found or not being found 

in the software. It paper also determines the probability of avoiding defects during software development which 

depends on the defect in given total potential defects which represents the number of defects before testing that 

are in the new code that has been implemented. This number is used to determine the probability of finding 

defect in the code which therefore determines the number of defects found in the software. Figure 1 shows a 

proposed framework for our model. 

 
Fig. 1 Proposed framework for software defect prediction 
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3.1 Overview of the Proposed Model 

The framework is made up of three parts: scheme evaluation, defect prediction, and verification. The scheme 

evaluation helps to analyze the prediction function of various competing schemes with all required statistics. 

The defect predictor builds techniques with respect to the estimated learning scheme. Apart from this, the defect 

predictor also helps to predict the software defects with all the data based on the constructed model. The 

verification step helps to verify that the classification is properly done and that the model is properly built. The 

various parts of the model are now explained in detail. 

 

3.2 Scheme Evaluation 

The scheme evaluation is perhaps the most prominent part of this prediction framework. It comprises the 

following: training data, statistical data, test data, learning tool (Artificial Neural Network), Statistical tool 

(Bayesian Networks), and Testing tool. This scheme helps to analyze the prediction function of various 

competing schemes with all required statistics. The defect predictor builds techniques with respect to the 

estimated learning scheme. At this level, many learning schemes are estimated by construction and measuring 

learners. However, the major function of this scheme is to categorize the training and test data by using historic 

data. The historic data contain all the data that have been used in the past to predict data. It stores both the 

dataset and information pertaining them in a repository and ensure that these information are available when 

requested for by the scheme evaluation. Thus the test data are usually autonomous when building the learner. 

Also, it contains the precondition to be evaluated in order to find the functioning of a learner over fresh data. 

This way, a cross validation is used to compute the precision of a predictive model in real life situation. Thus the 

cross-validation in a single round helps in partitioning the dataset into required complementary subsets. It then 

helps to analyze each of the subsets and then validate the analysis on the subsets. Therefore, to ensure 

variability, cross validation should be carried out on the partitioned datasets after which the evaluation results 

are computed 
 

Training Data: The training data are the datasets that are used in the experiment for implementing the research. 

Usually, they are trained by the training tool such as the artificial neural network before they are used to test the 

program. 
 

Test Data: These are the trained data which are used to test the source code after they have been trained. The 

real-time defect data sets used in this research. The data sets used in this study are obtained from NASA projects 

such as NASA MDP, and other space exploration related projects such as PC1, PC4, CM1, and ground orbiting 

satellite such as KC1 and KC3. There are twelve data sets are used to validate our technique. These datasets 

were obtained from NASA‟s Metric Data Program (MDP) data repository, available online at 

http//mdp.ivy.nasa.gov. The CM1 datasets is obtained from a spacecraft instrument, written in C programming 

language. It contains approximately 506 modules. The JM1 dataset is obtained from a predictive system project, 

written in C++. It contains approximately 10879 modules. The KC1 data is obtained from a science data 

processing project, written in C++. It contains approximately 2108 modules. The PC1 data is obtained from a 

science data processing project coded in C++. It contains 1108 modules. As seen in Table 1, these datasets 

varied in the percentage of defects modules, with CM1 dataset having the least percentage of defects in its 

modules and KC1having the largest percentage of defects.  
 

Learning Tool: The learning tool used is the artificial neural networks. A neural networks model is a multi-layer 

perception model that produces a value between 0 and 1. Usually, the predictors are in one layer, with each 

predictor as one neuron, and the output is in one layer. A non-linear function is used to combine values to 

connect layers and to produce the output. For a new observation, the predictors‟ values are placed on the outer 

layer and the predicted value between 0 and 1 is produced at the output neuron. Each artificial neuron is a 

simple processor with the ability to add all weighted inputs and then apply a mathematical transformation to 

generate an output. 
 

Statistical Tool: Bayesian Networks is used as the statistical tool for performing statistical data. A Bayesian 

network is a graph together with an associated set of probability tables. The nodes represent uncertain variables 

and the arcs represent the causal/relevance relationships between the variables. The variable „effective KLOC 

implemented‟ represents the complexity-adjusted size of the functionality implemented. As the amount of 

functionality increases the number of potential defects rises. This is due to increase in the size and complexity of 

the source code. 

The „probability of avoiding defect in development‟ depends on „defects in‟ given total potential defects. This 

number represents the number of defects (before testing) that are in the new code that has been implemented. 

This number „defect in‟ the code determines the probability of finding defect in the code which therefore 

determines the number of defects found in the software. 
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Testing: Testing is carried out after the data sets have been trained to determine whether they have defects or 

not. After testing the software projects, the number of defects found in each module is recorded and the total 

number of defects found in each project is also recorded and some values are the computed based on these 

findings. 

  

3.3 Defect Predictor 
The defect predictor is built to ensure that it can accurately predict the defects by ensuring that the false positive 

(fp) and false negatives (fn) are reduced to small fractions. When building the predictor, the following should be 

taken to consideration. 

1). A learning scheme is selected based on the performance results. This scheme is then used to predictor the 

defects by ensuring that the defects are properly classified. 

2). A predictor is constructed with the required relevant learning scheme as well as the entire statistics. The 

learning scheme contains the neural network which is used to train the datasets to ensure that they are well 

utilized. 

3). The datasets must be preprocessed in a similar way as earlier performed by historical data and the purpose of 

constructed predictor seems to predict software defects using all the preprocessed data. 

 

3.4 Bayesian Network Classifier 

The Bayesian classifier is a simple probabilistic classifier based on applying Bayesian theorem with strong 

independence assumption. The underlying probability model is an independent feature model. The Bayesian 

classifier is efficiently trained in supervised learning due to the precise nature of the probability model. 

Maximum likelihood methodology is used to find the parameter estimates in the Bayesian model. When the 

machine learning techniques are used to create functions from the training data, it is called supervised learning. 

The statistical parameters in a dataset is derived and this is called Maximum Likelihood Estimation (MLE). 

Based on interpretation of Bayesian probability and in accordance with Bayesian theory, a Bayesian classifier 

states that the occurrence or nonoccurrence of a feature is non- linked in any way to the occurrence or 

nonoccurrence of any other feature. 

Thus in a supervised learning problem, if an unknown target function  

f : X → Y or equivalently P(Y|X) is to be approximated, assume Y is a Boolean-valued random variable, and X is 

a vector containing n Boolean attributes. In other words, X = (X1, X2, …, Xn), where Xi is the Boolean random 

variable denoting the i
th

 attributes of X.  

Applying Bayes rule, it is learnt that P(Y = yi|X) can be represented as:  

 P(Y = yi|X = xk ) =         (3.1) 

 

Where ym denotes the m
th

 possible value for Y, xk denotes the k
th

 possible vector value for X. 

The Bayesian classification algorithm assumes the attributes (X1, X2, …, Xn) are all conditionally independent 

of one another, given Y. the value of this supposition is that it radically simplifies the representation of P(X|Y), 

and the problem of approximating it from the training data. 

Thus we write P(X|Y) to denote the probability of event X (an hypothesis) conditional on the occurrence of 

some event Y (evidence). If we are counting sample points, we are interested in the fraction of events Y for 

which X is also true. From this it should be clear that (with the comma denoting the conjunction of events), we 

have 

    P(X|Y) =         (3.2) 

This is often written in the form  

    P(X, Y) = p(X | Y)p(y)      (3.3) 

and referred to as the “product rule.” It is important to realize that this form of the rule is not, as often stated, a 

definition. Rather, it is a theorem derivable from simpler assumption. 

The Bayesian theorem can be used to tell us how to obtain a posterior probability of a hypothesis X after 

observation of some evidence Y, given the prior probability of X and the likelihood of observing Y were X to be 

the case: 

    P(X|Y) =       (3.4) 

This simple formula has immense practical importance on a domain such as diagnosis. It is often easier to elicit 

the probability, for example, of observing a symptom given a disease than that of a disease given symptom. Yet, 

operationally, it is usually the latter which is required. Thus in its general form, the Bayesian Theorem is as 

shown in equation (3.3). 
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IV. RESULTS AND DISCUSSION 
The real-time defect data sets used in this research shown in table 1. The data sets used in this study are obtained 

from NASA projects such as NASA MDP, and other space exploration related projects such as PC1, PC4, CM1, 

and ground orbiting satellite such as KC1 and KC3.  

 

Table 1 Data sets used for this study 

Data Set No. of Attributes No. of Modules Programming Language 

CM1 39 506 C 

JM1 21 10879 C++ 

KC1 21 2108 C++ 

KC3 39 429 Java 

KC4 39 125 C 

MC1 39 4621 C 

MC2 39 161 C 

MW1 39 403 C 

PC1 39 1108 C 

PC2 39 4505 C 

PC3 39 1511 C 

PC4 39 1347 C 

 

This NASA database is a repository that stores problems, products, and metrics data. The primary goal of this 

repository is to provide project data to the software community. Thus the Metrics Data Program collects artifacts 

from a large NASA datasets, generates metrics on the artifacts reports made available to the public. These 

datasets contains modules such as functions, subroutine, or methods containing lines of code (LOC) based 

metrics, Halstead metrics, and McCabes‟s Complexity measures. The number of defective modules is indicated 

in each of the projects. 

 

 
Fig. 2 A screenshot of Bayesian network after running the Java program 

 

Figure 2 shows a screenshot of the Bayesian network showing the different datasets such as lines of code (LOC) 

based metrics, Halstead metrics, and McCabes‟s Complexity measures, etc. 

 

V. CONCLUSIONS 
In this paper, we proposed the Bayesian network model for predicting software defects. In the model, certain 

software inputs are tested to determine the number of defects in them. Therefore, our program which is 

developed in Java programming language is able to count the number of inputs and outputs using certain 

parameters and expressions. This is possible when we input query into the network. The program is able to 

determine that a query has been supplied, the query type, the various events that takes place at each stage of the 

query determination, the choices made and the probability of defects being found or not being found in the 

software.  
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Appendix: Bayesian Network Implementation 

Input 

Count  

22  

Output 

Count  

1  

Parameter 

Count  

425  

Expression  P(loc_blank|defective) P(branch_count|defective) P(loc_code_and_comment|defective) 

P(loc_comments|defective) P(cyclomatic_complexity|defective) 

P(design_complexity|defective) P(essential_complexity|defective) 

P(loc_executable|defective) P(halstead_content|defective) P(halstead_difficulty|defective) 

P(halstead_effort|defective) P(halstead_error_est|defective) P(halstead_length|defective) 

P(halstead_level|defective) P(halstead_prog_time|defective) P(halstead_volume|defective) 

P(num_operands|defective) P(num_operators|defective) P(num_unique_operands|defective) 

P(num_unique_operators|defective) P(loc_total|defective) P(defective)  

Query 

Type  

EnumerationQuery  

Query  P(+defective|loc_blank=0,branch_count=0,loc_code_and_comment=0,loc_comments=0,cy

clomatic_complexity=0,design_complexity=0,essential_complexity=0,loc_executable=0,ha

lstead_content=0,halstead_difficulty=0,halstead_effort=0,halstead_error_est=0,halstead_len

gth=0,halstead_level=0,halstead_prog_time=0,halstead_volume=0,num_operands=0,num_

operators=0,num_unique_operands=0,num_unique_operators=0,loc_total=0)  

 

Events  

Event  Choices  Probability  

loc_blank  0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 

20, 21, 22, 23, 24, 3, 35, 4, 5, 58, 6, 7, 8, 9  

P(loc_blank|defective)  

branch_count  1, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25, 

26, 27, 29, 3, 31, 33, 35, 37, 39, 4, 42, 49, 5, 

51, 53, 54, 6, 67, 7, 8, 89, 9  

P(branch_count|defecti

ve)  

http://dx.doi.org/10.4235/jcc.2014
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-444-00205-7
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loc_code_and_

comment  

0, 1, 11, 2, 3, 4, 5, 6, 7, 8  P(loc_code_and_com

ment|defective)  

loc_comments  0, 1, 10, 11, 12, 14, 16, 17, 19, 2, 20, 26, 3, 35, 

4, 44, 5, 6, 7, 8, 9  

P(loc_comments|defec

tive)  

cyclomatic_co

mplexity  

1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 20, 

22, 25, 26, 27, 28, 3, 34, 4, 45, 5, 6, 7, 8, 9  

P(cyclomatic_complex

ity|defective)  

design_comple

xity  

1, 10, 11, 12, 13, 14, 15, 16, 18, 19, 2, 22, 25, 

27, 29, 3, 4, 45, 5, 6, 7, 8, 9  

P(design_complexity|d

efective)  

essential_comp

lexity  

1, 10, 11, 12, 14, 15, 16, 18, 19, 21, 22, 26, 3, 

4, 5, 6, 7, 8, 9  

P(essential_complexity

|defective)  

loc_executable  Type0, Type1, Type2  P(loc_executable|defec

tive)  

halstead_conte

nt  

Type0, Type1, Type2  P(halstead_content|def

ective)  

halstead_diffic

ulty  

Type0, Type1, Type2  P(halstead_difficulty|d

efective)  

halstead_effort  Type0, Type1, Type2  P(halstead_effort|defec

tive)  

halstead_error_

est  

Type0, Type1, Type2  P(halstead_error_est|d

efective)  

halstead_length  Type0, Type1, Type2  P(halstead_length|defe

ctive)  

halstead_level  Type0, Type1, Type2  P(halstead_level|defect

ive)  

halstead_prog_

time  

Type0, Type1, Type2  P(halstead_prog_time|

defective)  

halstead_volu

me  

Type0, Type1, Type2  P(halstead_volume|def

ective)  

num_operands  Type0, Type1, Type2  P(num_operands|defec

tive)  

num_operators  Type0, Type1, Type2  P(num_operators|defec

tive)  

num_unique_o

perands  

Type0, Type1, Type2  P(num_unique_operan

ds|defective)  

num_unique_o

perators  

0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 3, 30, 31, 

4, 5, 6, 7, 8, 9  

P(num_unique_operat

ors|defective)  

loc_total  Type0, Type1, Type2  P(loc_total|defective)  

defective  N, Y  P(defective)  

 

Probability Tables  

loc_blank  

P(loc_blank=0|-defective)  87.441860%  

P(loc_blank=1|-defective)  57.251908%  

P(loc_blank=2|-defective)  3.333333%  

P(loc_blank=3|-defective)  3.703704%  

P(loc_blank=4|-defective)  63.709677%  

P(loc_blank=5|-defective)  7.142857%  

P(loc_blank=6|-defective)  3.703704%  

P(loc_blank=7|-defective)  3.703704%  

P(loc_blank=8|-defective)  6.896552%  

P(loc_blank=9|-defective)  3.703704%  

P(loc_blank=10|-defective)  48.351648%  

P(loc_blank=11|-defective)  3.703704%  

P(loc_blank=12|-defective)  6.060606%  

P(loc_blank=13|-defective)  40.384615%  

P(loc_blank=14|-defective)  22.727273%  

P(loc_blank=15|-defective)  3.571429%  
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P(loc_blank=16|-defective)  28.888889%  

P(loc_blank=17|-defective)  15.789474%  

P(loc_blank=18|-defective)  6.250000%  

P(loc_blank=19|-defective)  0.000000%  

P(loc_blank=20|-defective)  9.375000%  

P(loc_blank=21|-defective)  9.677419%  

P(loc_blank=22|-defective)  0.000000%  

P(loc_blank=23|-defective)  3.571429%  

P(loc_blank=24|-defective)  3.448276%  

P(loc_blank=25|-defective)  8.823529%  

P(loc_blank=26|-defective)  20.588235%  

P(loc_blank=0|+defective)  6.744186%  

P(loc_blank=1|+defective)  23.664122%  

P(loc_blank=2|+defective)  13.333333%  

P(loc_blank=3|+defective)  3.703704%  

P(loc_blank=4|+defective)  16.129032%  

P(loc_blank=5|+defective)  3.571429%  

P(loc_blank=6|+defective)  3.703704%  

P(loc_blank=7|+defective)  3.703704%  

P(loc_blank=8|+defective)  6.896552%  

P(loc_blank=9|+defective)  3.703704%  

P(loc_blank=10|+defective)  24.175824%  

P(loc_blank=11|+defective)  3.703704%  

P(loc_blank=12|+defective)  18.181818%  

P(loc_blank=13|+defective)  11.538462%  

P(loc_blank=14|+defective)  20.454545%  

P(loc_blank=15|+defective)  7.142857%  

P(loc_blank=16|+defective)  15.555556%  

P(loc_blank=17|+defective)  18.421053%  

P(loc_blank=18|+defective)  15.625000%  

P(loc_blank=19|+defective)  0.000000%  

P(loc_blank=20|+defective)  12.500000%  

P(loc_blank=21|+defective)  9.677419%  

P(loc_blank=22|+defective)  0.000000%  

P(loc_blank=23|+defective)  7.142857%  

P(loc_blank=24|+defective)  10.344828%  

P(loc_blank=25|+defective)  17.647059%  

P(loc_blank=26|+defective)  5.882353%  

branch_count  

P(branch_count=0|-defective)  5.555556%  

P(branch_count=1|-defective)  10.869565%  

P(branch_count=2|-defective)  7.317073%  

P(branch_count=3|-defective)  11.627907%  

P(branch_count=4|-defective)  2.857143%  

P(branch_count=5|-defective)  5.263158%  

P(branch_count=6|-defective)  5.128205%  

P(branch_count=7|-defective)  68.387097%  

P(branch_count=8|-defective)  2.702703%  

P(branch_count=9|-defective)  5.263158%  

P(branch_count=10|-defective)  5.555556%  

P(branch_count=11|-defective)  2.777778%  

P(branch_count=12|-defective)  42.268041%  

P(branch_count=13|-defective)  2.857143%  

P(branch_count=14|-defective)  2.777778%  

P(branch_count=15|-defective)  8.108108%  

P(branch_count=16|-defective)  7.894737%  

P(branch_count=17|-defective)  33.333333%  
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P(branch_count=18|-defective)  2.777778%  

P(branch_count=19|-defective)  0.000000%  

P(branch_count=20|-defective)  7.894737%  

P(branch_count=21|-defective)  0.000000%  

P(branch_count=22|-defective)  5.555556%  

P(branch_count=23|-defective)  0.000000%  

P(branch_count=24|-defective)  10.256410%  

P(branch_count=25|-defective)  8.108108%  

P(branch_count=26|-defective)  0.000000%  

P(branch_count=27|-defective)  0.000000%  

P(branch_count=28|-defective)  2.777778%  

P(branch_count=29|-defective)  8.333333%  

P(branch_count=30|-defective)  5.555556%  

P(branch_count=31|-defective)  8.108108%  

P(branch_count=32|-defective)  15.555556%  

P(branch_count=33|-defective)  0.000000%  

P(branch_count=34|-defective)  19.642857%  

P(branch_count=0|+defective)  2.777778%  

P(branch_count=1|+defective)  17.391304%  

P(branch_count=2|+defective)  12.195122%  

P(branch_count=3|+defective)  11.627907%  

P(branch_count=4|+defective)  2.857143%  

P(branch_count=5|+defective)  7.894737%  

P(branch_count=6|+defective)  10.256410%  

P(branch_count=7|+defective)  10.322581%  

P(branch_count=8|+defective)  8.108108%  

P(branch_count=9|+defective)  7.894737%  

P(branch_count=10|+defective)  2.777778%  

P(branch_count=11|+defective)  5.555556%  

P(branch_count=12|+defective)  23.711340%  

P(branch_count=13|+defective)  2.857143%  

P(branch_count=14|+defective)  5.555556%  

P(branch_count=15|+defective)  2.702703%  

P(branch_count=16|+defective)  5.263158%  

P(branch_count=17|+defective)  18.840580%  

P(branch_count=18|+defective)  5.555556%  

P(branch_count=19|+defective)  0.000000%  

P(branch_count=20|+defective)  5.263158%  

P(branch_count=21|+defective)  0.000000%  

P(branch_count=22|+defective)  2.777778%  

P(branch_count=23|+defective)  0.000000%  

P(branch_count=24|+defective)  5.128205%  

P(branch_count=25|+defective)  2.702703%  

P(branch_count=26|+defective)  0.000000%  

P(branch_count=27|+defective)  0.000000%  

P(branch_count=28|+defective)  5.555556%  

P(branch_count=29|+defective)  22.916667%  

P(branch_count=30|+defective)  2.777778%  

P(branch_count=31|+defective)  2.702703%  

P(branch_count=32|+defective)  11.111111%  

P(branch_count=33|+defective)  0.000000%  

P(branch_count=34|+defective)  21.428571%  

loc_code_and_comment  

P(loc_code_and_comment=0|-defective)  79.423329%  

P(loc_code_and_comment=1|-defective)  57.142857%  

P(loc_code_and_comment=2|-defective)  0.000000%  

P(loc_code_and_comment=3|-defective)  18.181818%  
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P(loc_code_and_comment=4|-defective)  33.333333%  

P(loc_code_and_comment=5|-defective)  37.500000%  

P(loc_code_and_comment=6|-defective)  10.000000%  

P(loc_code_and_comment=7|-defective)  25.000000%  

P(loc_code_and_comment=8|-defective)  18.181818%  

P(loc_code_and_comment=9|-defective)  10.000000%  

P(loc_code_and_comment=0|+defective)  19.528178%  

P(loc_code_and_comment=1|+defective)  14.285714%  

P(loc_code_and_comment=2|+defective)  0.000000%  

P(loc_code_and_comment=3|+defective)  9.090909%  

P(loc_code_and_comment=4|+defective)  13.333333%  

P(loc_code_and_comment=5|+defective)  12.500000%  

P(loc_code_and_comment=6|+defective)  10.000000%  

P(loc_code_and_comment=7|+defective)  8.333333%  

P(loc_code_and_comment=8|+defective)  9.090909%  

P(loc_code_and_comment=9|+defective)  10.000000%  

loc_comments  

P(loc_comments=0|-defective)  82.380952%  

P(loc_comments=1|-defective)  61.458333%  

P(loc_comments=2|-defective)  13.043478%  

P(loc_comments=3|-defective)  4.545455%  

P(loc_comments=4|-defective)  31.707317%  

P(loc_comments=5|-defective)  27.272727%  

P(loc_comments=6|-defective)  18.518519%  

P(loc_comments=7|-defective)  11.538462%  

P(loc_comments=8|-defective)  4.761905%  

P(loc_comments=9|-defective)  4.000000%  

P(loc_comments=10|-defective)  12.500000%  

P(loc_comments=11|-defective)  0.000000%  

P(loc_comments=12|-defective)  9.090909%  

P(loc_comments=13|-defective)  4.545455%  

P(loc_comments=14|-defective)  9.090909%  

P(loc_comments=15|-defective)  4.761905%  

P(loc_comments=16|-defective)  4.545455%  

P(loc_comments=17|-defective)  9.090909%  

P(loc_comments=18|-defective)  15.384615%  

P(loc_comments=19|-defective)  4.761905%  

P(loc_comments=20|-defective)  37.288136%  

P(loc_comments=0|+defective)  14.603175%  

P(loc_comments=1|+defective)  18.750000%  

P(loc_comments=2|+defective)  4.347826%  

P(loc_comments=3|+defective)  9.090909%  

P(loc_comments=4|+defective)  21.951220%  

P(loc_comments=5|+defective)  15.151515%  

P(loc_comments=6|+defective)  11.111111%  

P(loc_comments=7|+defective)  15.384615%  

P(loc_comments=8|+defective)  4.761905%  

P(loc_comments=9|+defective)  20.000000%  

P(loc_comments=10|+defective)  8.333333%  

P(loc_comments=11|+defective)  0.000000%  

P(loc_comments=12|+defective)  4.545455%  

P(loc_comments=13|+defective)  9.090909%  

P(loc_comments=14|+defective)  4.545455%  

P(loc_comments=15|+defective)  4.761905%  

P(loc_comments=16|+defective)  9.090909%  

P(loc_comments=17|+defective)  4.545455%  

P(loc_comments=18|+defective)  11.538462%  
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P(loc_comments=19|+defective)  4.761905%  

P(loc_comments=20|+defective)  30.508475%  

cyclomatic_complexity  

P(cyclomatic_complexity=0|-defective)  16.129032%  

P(cyclomatic_complexity=1|-defective)  10.000000%  

P(cyclomatic_complexity=2|-defective)  72.108844%  

P(cyclomatic_complexity=3|-defective)  7.142857%  

P(cyclomatic_complexity=4|-defective)  3.571429%  

P(cyclomatic_complexity=5|-defective)  12.903226%  

P(cyclomatic_complexity=6|-defective)  3.703704%  

P(cyclomatic_complexity=7|-defective)  3.571429%  

P(cyclomatic_complexity=8|-defective)  3.571429%  

P(cyclomatic_complexity=9|-defective)  45.977011%  

P(cyclomatic_complexity=10|-defective)  7.142857%  

P(cyclomatic_complexity=11|-defective)  13.513514%  

P(cyclomatic_complexity=12|-defective)  40.625000%  

P(cyclomatic_complexity=13|-defective)  28.571429%  

P(cyclomatic_complexity=14|-defective)  12.195122%  

P(cyclomatic_complexity=15|-defective)  21.621622%  

P(cyclomatic_complexity=16|-defective)  0.000000%  

P(cyclomatic_complexity=17|-defective)  0.000000%  

P(cyclomatic_complexity=18|-defective)  8.823529%  

P(cyclomatic_complexity=19|-defective)  0.000000%  

P(cyclomatic_complexity=20|-defective)  14.285714%  

P(cyclomatic_complexity=21|-defective)  3.571429%  

P(cyclomatic_complexity=22|-defective)  6.666667%  

P(cyclomatic_complexity=23|-defective)  26.666667%  

P(cyclomatic_complexity=24|-defective)  29.787234%  

P(cyclomatic_complexity=25|-defective)  10.000000%  

P(cyclomatic_complexity=26|-defective)  6.666667%  

P(cyclomatic_complexity=0|+defective)  3.225806%  

P(cyclomatic_complexity=1|+defective)  6.666667%  

P(cyclomatic_complexity=2|+defective)  10.884354%  

P(cyclomatic_complexity=3|+defective)  3.571429%  

P(cyclomatic_complexity=4|+defective)  7.142857%  

P(cyclomatic_complexity=5|+defective)  6.451613%  

P(cyclomatic_complexity=6|+defective)  3.703704%  

P(cyclomatic_complexity=7|+defective)  7.142857%  

P(cyclomatic_complexity=8|+defective)  7.142857%  

P(cyclomatic_complexity=9|+defective)  25.287356%  

P(cyclomatic_complexity=10|+defective)  3.571429%  

P(cyclomatic_complexity=11|+defective)  18.918919%  

P(cyclomatic_complexity=12|+defective)  20.312500%  

P(cyclomatic_complexity=13|+defective)  26.785714%  

P(cyclomatic_complexity=14|+defective)  26.829268%  

P(cyclomatic_complexity=15|+defective)  10.810811%  

P(cyclomatic_complexity=16|+defective)  0.000000%  

P(cyclomatic_complexity=17|+defective)  0.000000%  

P(cyclomatic_complexity=18|+defective)  17.647059%  

P(cyclomatic_complexity=19|+defective)  0.000000%  

P(cyclomatic_complexity=20|+defective)  14.285714%  

P(cyclomatic_complexity=21|+defective)  7.142857%  

P(cyclomatic_complexity=22|+defective)  10.000000%  

P(cyclomatic_complexity=23|+defective)  17.777778%  

P(cyclomatic_complexity=24|+defective)  17.021277%  

P(cyclomatic_complexity=25|+defective)  6.666667%  

P(cyclomatic_complexity=26|+defective)  10.000000%  
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design_complexity  

P(design_complexity=0|-defective)  17.241379%  

P(design_complexity=1|-defective)  71.612903%  

P(design_complexity=2|-defective)  8.333333%  

P(design_complexity=3|-defective)  8.333333%  

P(design_complexity=4|-defective)  4.166667%  

P(design_complexity=5|-defective)  8.333333%  

P(design_complexity=6|-defective)  48.148148%  

P(design_complexity=7|-defective)  31.034483%  

P(design_complexity=8|-defective)  30.612245%  

P(design_complexity=9|-defective)  36.585366%  

P(design_complexity=10|-defective)  15.151515%  

P(design_complexity=11|-defective)  19.354839%  

P(design_complexity=12|-defective)  0.000000%  

P(design_complexity=13|-defective)  0.000000%  

P(design_complexity=14|-defective)  0.000000%  

P(design_complexity=15|-defective)  13.333333%  

P(design_complexity=16|-defective)  11.111111%  

P(design_complexity=17|-defective)  4.166667%  

P(design_complexity=18|-defective)  7.407407%  

P(design_complexity=19|-defective)  7.407407%  

P(design_complexity=20|-defective)  27.027027%  

P(design_complexity=21|-defective)  6.666667%  

P(design_complexity=22|-defective)  8.000000%  

P(design_complexity=0|+defective)  10.344828%  

P(design_complexity=1|+defective)  14.838710%  

P(design_complexity=2|+defective)  4.166667%  

P(design_complexity=3|+defective)  4.166667%  

P(design_complexity=4|+defective)  8.333333%  

P(design_complexity=5|+defective)  4.166667%  

P(design_complexity=6|+defective)  25.925926%  

P(design_complexity=7|+defective)  32.758621%  

P(design_complexity=8|+defective)  26.530612%  

P(design_complexity=9|+defective)  12.195122%  

P(design_complexity=10|+defective)  21.212121%  

P(design_complexity=11|+defective)  12.903226%  

P(design_complexity=12|+defective)  0.000000%  

P(design_complexity=13|+defective)  0.000000%  

P(design_complexity=14|+defective)  0.000000%  

P(design_complexity=15|+defective)  16.666667%  

P(design_complexity=16|+defective)  11.111111%  

P(design_complexity=17|+defective)  8.333333%  

P(design_complexity=18|+defective)  14.814815%  

P(design_complexity=19|+defective)  14.814815%  

P(design_complexity=20|+defective)  16.216216%  

P(design_complexity=21|+defective)  23.333333%  

P(design_complexity=22|+defective)  8.000000%  

essential_complexity  

P(essential_complexity=0|-defective)  16.666667%  

P(essential_complexity=1|-defective)  5.263158%  

P(essential_complexity=2|-defective)  10.000000%  

P(essential_complexity=3|-defective)  51.724138%  

P(essential_complexity=4|-defective)  28.125000%  

P(essential_complexity=5|-defective)  13.793103%  

P(essential_complexity=6|-defective)  30.000000%  

P(essential_complexity=7|-defective)  13.043478%  

P(essential_complexity=8|-defective)  0.000000%  
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P(essential_complexity=9|-defective)  0.000000%  

P(essential_complexity=10|-defective)  0.000000%  

P(essential_complexity=11|-defective)  0.000000%  

P(essential_complexity=12|-defective)  4.761905%  

P(essential_complexity=13|-defective)  17.857143%  

P(essential_complexity=14|-defective)  9.523810%  

P(essential_complexity=15|-defective)  5.263158%  

P(essential_complexity=16|-defective)  5.000000%  

P(essential_complexity=17|-defective)  21.428571%  

P(essential_complexity=18|-defective)  5.000000%  

P(essential_complexity=0|+defective)  12.500000%  

P(essential_complexity=1|+defective)  5.263158%  

P(essential_complexity=2|+defective)  5.000000%  

P(essential_complexity=3|+defective)  18.965517%  

P(essential_complexity=4|+defective)  18.750000%  

P(essential_complexity=5|+defective)  27.586207%  

P(essential_complexity=6|+defective)  13.333333%  

P(essential_complexity=7|+defective)  13.043478%  

P(essential_complexity=8|+defective)  0.000000%  

P(essential_complexity=9|+defective)  0.000000%  

P(essential_complexity=10|+defective)  0.000000%  

P(essential_complexity=11|+defective)  0.000000%  

P(essential_complexity=12|+defective)  14.285714%  

P(essential_complexity=13|+defective)  21.428571%  

P(essential_complexity=14|+defective)  9.523810%  

P(essential_complexity=15|+defective)  5.263158%  

P(essential_complexity=16|+defective)  10.000000%  

P(essential_complexity=17|+defective)  17.857143%  

P(essential_complexity=18|+defective)  10.000000%  

loc_executable  

P(loc_executable=0|-defective)  81.322957%  

P(loc_executable=1|-defective)  33.333333%  

P(loc_executable=2|-defective)  50.000000%  

P(loc_executable=0|+defective)  18.547341%  

P(loc_executable=1|+defective)  61.111111%  

P(loc_executable=2|+defective)  33.333333%  

halstead_content  

P(halstead_content=0|-defective)  81.432361%  

P(halstead_content=1|-defective)  57.575758%  

P(halstead_content=2|-defective)  37.500000%  

P(halstead_content=0|+defective)  18.435013%  

P(halstead_content=1|+defective)  39.393939%  

P(halstead_content=2|+defective)  50.000000%  

halstead_difficulty  

P(halstead_difficulty=0|-defective)  85.446686%  

P(halstead_difficulty=1|-defective)  43.529412%  

P(halstead_difficulty=2|-defective)  37.500000%  

P(halstead_difficulty=0|+defective)  14.409222%  

P(halstead_difficulty=1|+defective)  55.294118%  

P(halstead_difficulty=2|+defective)  56.250000%  

halstead_effort  

P(halstead_effort=0|-defective)  80.690537%  

P(halstead_effort=1|-defective)  37.500000%  

P(halstead_effort=2|-defective)  40.000000%  

P(halstead_effort=0|+defective)  19.181586%  

P(halstead_effort=1|+defective)  50.000000%  

P(halstead_effort=2|+defective)  40.000000%  
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halstead_error_est  

P(halstead_error_est=0|-defective)  81.001284%  

P(halstead_error_est=1|-defective)  25.000000%  

P(halstead_error_est=2|-defective)  50.000000%  

P(halstead_error_est=0|+defective)  18.870347%  

P(halstead_error_est=1|+defective)  66.666667%  

P(halstead_error_est=2|+defective)  25.000000%  

halstead_length  

P(halstead_length=0|-defective)  81.056701%  

P(halstead_length=1|-defective)  35.714286%  

P(halstead_length=2|-defective)  40.000000%  

P(halstead_length=0|+defective)  18.814433%  

P(halstead_length=1|+defective)  57.142857%  

P(halstead_length=2|+defective)  40.000000%  

halstead_level  

P(halstead_level=0|-defective)  75.981162%  

P(halstead_level=1|-defective)  97.260274%  

P(halstead_level=2|-defective)  83.333333%  

P(halstead_level=0|+defective)  23.861852%  

P(halstead_level=1|+defective)  2.054795%  

P(halstead_level=2|+defective)  8.333333%  

halstead_prog_time  

P(halstead_prog_time=0|-defective)  80.690537%  

P(halstead_prog_time=1|-defective)  37.500000%  

P(halstead_prog_time=2|-defective)  40.000000%  

P(halstead_prog_time=0|+defective)  19.181586%  

P(halstead_prog_time=1|+defective)  50.000000%  

P(halstead_prog_time=2|+defective)  40.000000%  

halstead_volume  

P(halstead_volume=0|-defective)  80.897436%  

P(halstead_volume=1|-defective)  27.272727%  

P(halstead_volume=2|-defective)  50.000000%  

P(halstead_volume=0|+defective)  18.974359%  

P(halstead_volume=1|+defective)  63.636364%  

P(halstead_volume=2|+defective)  25.000000%  

num_operands  

P(num_operands=0|-defective)  80.976864%  

P(num_operands=1|-defective)  30.769231%  

P(num_operands=2|-defective)  50.000000%  

P(num_operands=0|+defective)  18.894602%  

P(num_operands=1|+defective)  61.538462%  

P(num_operands=2|+defective)  25.000000%  

num_operators  

P(num_operators=0|-defective)  81.161290%  

P(num_operators=1|-defective)  33.333333%  

P(num_operators=2|-defective)  40.000000%  

P(num_operators=0|+defective)  18.709677%  

P(num_operators=1|+defective)  60.000000%  

P(num_operators=2|+defective)  40.000000%  

num_unique_operands  

P(num_unique_operands=0|-defective)  81.973684%  

P(num_unique_operands=1|-defective)  35.483871%  

P(num_unique_operands=2|-defective)  50.000000%  

P(num_unique_operands=0|+defective)  17.894737%  

P(num_unique_operands=1|+defective)  61.290323%  

P(num_unique_operands=2|+defective)  25.000000%  

num_unique_operators  
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P(num_unique_operators=0|-defective)  44.067797%  

P(num_unique_operators=1|-defective)  58.974359%  

P(num_unique_operators=2|-defective)  16.666667%  

P(num_unique_operators=3|-defective)  12.195122%  

P(num_unique_operators=4|-defective)  34.693878%  

P(num_unique_operators=5|-defective)  17.073171%  

P(num_unique_operators=6|-defective)  9.523810%  

P(num_unique_operators=7|-defective)  2.631579%  

P(num_unique_operators=8|-defective)  8.108108%  

P(num_unique_operators=9|-defective)  8.571429%  

P(num_unique_operators=10|-defective)  2.857143%  

P(num_unique_operators=11|-defective)  3.030303%  

P(num_unique_operators=12|-defective)  40.845070%  

P(num_unique_operators=13|-defective)  5.714286%  

P(num_unique_operators=14|-defective)  2.941176%  

P(num_unique_operators=15|-defective)  3.030303%  

P(num_unique_operators=16|-defective)  79.878049%  

P(num_unique_operators=17|-defective)  3.125000%  

P(num_unique_operators=18|-defective)  2.941176%  

P(num_unique_operators=19|-defective)  42.105263%  

P(num_unique_operators=20|-defective)  60.439560%  

P(num_unique_operators=21|-defective)  58.426966%  

P(num_unique_operators=22|-defective)  48.648649%  

P(num_unique_operators=23|-defective)  35.616438%  

P(num_unique_operators=24|-defective)  58.947368%  

P(num_unique_operators=25|-defective)  47.945205%  

P(num_unique_operators=26|-defective)  35.714286%  

P(num_unique_operators=27|-defective)  37.704918%  

P(num_unique_operators=28|-defective)  32.075472%  

P(num_unique_operators=29|-defective)  26.000000%  

P(num_unique_operators=30|-defective)  21.739130%  

P(num_unique_operators=31|-defective)  12.820513%  

P(num_unique_operators=0|+defective)  5.084746%  

P(num_unique_operators=1|+defective)  2.564103%  

P(num_unique_operators=2|+defective)  20.833333%  

P(num_unique_operators=3|+defective)  14.634146%  

P(num_unique_operators=4|+defective)  4.081633%  

P(num_unique_operators=5|+defective)  9.756098%  

P(num_unique_operators=6|+defective)  19.047619%  

P(num_unique_operators=7|+defective)  18.421053%  

P(num_unique_operators=8|+defective)  10.810811%  

P(num_unique_operators=9|+defective)  5.714286%  

P(num_unique_operators=10|+defective)  11.428571%  

P(num_unique_operators=11|+defective)  6.060606%  

P(num_unique_operators=12|+defective)  16.901408%  

P(num_unique_operators=13|+defective)  8.571429%  

P(num_unique_operators=14|+defective)  8.823529%  

P(num_unique_operators=15|+defective)  6.060606%  

P(num_unique_operators=16|+defective)  1.829268%  

P(num_unique_operators=17|+defective)  3.125000%  

P(num_unique_operators=18|+defective)  8.823529%  

P(num_unique_operators=19|+defective)  5.263158%  

P(num_unique_operators=20|+defective)  6.593407%  

P(num_unique_operators=21|+defective)  7.865169%  

P(num_unique_operators=22|+defective)  10.810811%  

P(num_unique_operators=23|+defective)  23.287671%  

P(num_unique_operators=24|+defective)  9.473684%  



Predicting Software Defects Using Bayesian Network Approach  

www.theijes.com                                                          The IJES                                                                  Page 89 

P(num_unique_operators=25|+defective)  10.958904%  

P(num_unique_operators=26|+defective)  21.428571%  

P(num_unique_operators=27|+defective)  13.114754%  

P(num_unique_operators=28|+defective)  11.320755%  

P(num_unique_operators=29|+defective)  14.000000%  

P(num_unique_operators=30|+defective)  13.043478%  

P(num_unique_operators=31|+defective)  10.256410%  

loc_total  

P(loc_total=0|-defective)  81.592689%  

P(loc_total=1|-defective)  36.363636%  

P(loc_total=2|-defective)  42.857143%  

P(loc_total=0|+defective)  18.276762%  

P(loc_total=1|+defective)  59.090909%  

P(loc_total=2|+defective)  42.857143%  

defective  

P(+defective)  80.456853%  

P(-defective)  19.543147%  

 


