
The International Journal Of Engineering And Science (IJES)

|| Volume || 5 || Issue || 8 || Pages || PP 74-89|| 2016 ||

ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

www.theijes.com The IJES Page 74

Predicting Software Defects Using Bayesian Network Approach

E. E. Ogheneovo
*
, N. E. Udofia

1
Department of Computer Science, University of Port Harcourt, Port Harcourt, Nigeria

2
Department of Computer Science, University of Port Harcourt, Port Harcourt, Nigeria

--ABSTRACT---

Software defects are very predominant especially in large software these days because programmers do not take

the pain to properly debug and test their software before releasing them to customers and users. When these

software are put into use, the defects manifest themselves especially if they are dormant or inactive at the time

the software is being developed. As a result, they do cause errors and eventually failure if not quickly handled

thereby causing serious damages in terms of human and material loss. This paper proposed the Bayesian

network model for predicting software defects. In the model, certain software inputs are tested to determine the

number of defects in them. Therefore, our program which is developed in Java programming language is able to

count the number of inputs and outputs using certain parameters and expressions. This is possible when we

input query into the network. The program is able to determine that a query has been supplied, the query type,

the various events that takes place at each stage of the query determination, the choices made and the

probability of defects being found or not being found in the software.

Keywords: Software, software defects, Bayesian network, defect prediction model, NASA metric, software

failure

-- -

Date of Submission: 07 August 2016 Date of Accepted: 30 August 2016

--- ----------

I. INTRODUCTION
There has been a huge growth in the demand for quality and reliable software in recent times. As a result, issues

relating to software testing, software quality and software reliability are at the forefront when discussing issues

relating to software [1]. These issues are increasingly becoming more critical among software engineers,

developers, and users of the software. The ability to determine and measure software defects are extremely

important to ensure cost minimization and also help in improving the overall quality and reliability of such

software. As noted in Schull et al. [2], finding and fixing a severe software problem after delivery is often 100

times more expensive than finding and fixing it during the requirements and design phase. Therefore, it is

always easier and less expensive to be able to detect and/or predict software defects at the early stage of

software development [3].

Software defects [4] -- [6] are very predominant especially in large software these days because programmers do

not take the pain to properly debug and test their software before releasing them to customers and users. When

these software are put into use, the defects manifest themselves especially if they are dormant or inactive at the

time the software is being developed. As a result, they often cause errors and eventually failure if not quickly

handled thereby causing serious damages in terms of human and material loss. Software defects are faults or

bugs introduced into software intentionally or unintentionally by the software developer(s) when the software is

being developed. Quinlan and Panas [7] define software defects as faults that are introduced unintentionally into

computer programs, preventing them from behaving correctly. Software defects pose serious problems during

development and after delivery to users [8] [9]. There is hardly any piece of software that is free of errors or

defects no matter how small it is especially when it is first developed.

Software complexity is a major cause of software defects [10]. As software complexity increases, so does the

likelihood of more defects or bugs in the software. Software complexity [11] -- [13] causes more errors to be

introduced to the software. Large software projects are more likely to have more defects due to their

complexities. Therefore, it is necessary to do everything humanly possible to minimize them drastically at each

stage of the development process instead of trying to fix the software after development or during post-delivery

stage. It is often better to find and fix defects during development than after delivery. Better still, finding and

fixing bugs at each stage of the developmental process is even for cheaper than after development or after

delivery. Therefore, early verification and validation of software is to ensure that software defects are found and

fixed earlier in software development life cycle.

This paper proposed the Bayesian network model for predicting software defects. In the model, certain software

inputs are tested to determine the number of defects in them. Therefore, our program which is developed in Java

programming language is able to count the number of inputs and outputs using certain parameters and

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 75

expressions. This is possible when we input query into the network. The program is able to determine that a

query has been supplied, the query type, the various events that takes place at each stage of the query

determination, the choices made and the probability of defects being found or not being found in the software. It

paper also determines the probability of avoiding defects during software development which depends on the

defect in given total potential defects which represents the number of defects before testing that are in the new

code that has been implemented. This number is used to determine the probability of finding defect in the code

which therefore determines the number of defects found in the software.

II. RELATED WORK
Liu et al. [14] proposed a model that builds Bayesian Network that represents a probability distribution of each

factor and how they affect defects, considering strong or weak correlations exists between individual metric

attributes. The model was compared with other models and it produces statically significant estimations. Fenton

et al. [15] proposed a Bayesian network approach for predicting the number of residual defects that are likely to

be found during independent testing or operational usage.

Radhinski and Hoffmann [16] carried out a comprehensive study on software development prediction by

comparing 23 classifiers in WEKA over four public datasets. They analyzes the accuracy of predictions for

software. Development effort using different machine learning techniques based on the stability of the

predictions. They tried to find out if particular techniques achieve similar level of accuracy using different

datasets. Two assumptions were drawn from the work: (1) predictions are performed using local empirical data,

and (2) predictions are performed using local empirical data and very little expert input is required. They used

23 machine learning techniques with four publicly available datasets: COCOMO, Desharnais, Maxwell, and

QQDefects.

Mendes and Mosley [17] compared several Bayesian network models for Web effort estimation using a cross-

company dataset. They developed eight Bayesian networks, which were divided into two groups. Four of them

were built using Hugin and PowerSoft tools with two training sets, each with 130 Web projects while the other

four were built using a causal graph based on domain expert. Using a benchmark, the BN-based estimates were

also compared to estimates obtained using manual stepwise regression (MSWR), case-based reasoning (CBR),

mean-and-median-based effort models. The result shows that better performance are obtained when simpler

models such as median effort as opposed to complex models such as MSWR.

III. METHODOLOGY
In the model, certain software inputs are tested to determine the number of defects in them. Therefore, our

program which is developed in Java programming language is able to count the number of inputs and outputs

using certain parameters and expressions. This is possible when we input query into the network. The program

is able to determine that a query has been supplied, the query type, the various events that takes place at each

stage of the query determination, the choices made and the probability of defects being found or not being found

in the software. It paper also determines the probability of avoiding defects during software development which

depends on the defect in given total potential defects which represents the number of defects before testing that

are in the new code that has been implemented. This number is used to determine the probability of finding

defect in the code which therefore determines the number of defects found in the software. Figure 1 shows a

proposed framework for our model.

Fig. 1 Proposed framework for software defect prediction

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 76

3.1 Overview of the Proposed Model

The framework is made up of three parts: scheme evaluation, defect prediction, and verification. The scheme

evaluation helps to analyze the prediction function of various competing schemes with all required statistics.

The defect predictor builds techniques with respect to the estimated learning scheme. Apart from this, the defect

predictor also helps to predict the software defects with all the data based on the constructed model. The

verification step helps to verify that the classification is properly done and that the model is properly built. The

various parts of the model are now explained in detail.

3.2 Scheme Evaluation

The scheme evaluation is perhaps the most prominent part of this prediction framework. It comprises the

following: training data, statistical data, test data, learning tool (Artificial Neural Network), Statistical tool

(Bayesian Networks), and Testing tool. This scheme helps to analyze the prediction function of various

competing schemes with all required statistics. The defect predictor builds techniques with respect to the

estimated learning scheme. At this level, many learning schemes are estimated by construction and measuring

learners. However, the major function of this scheme is to categorize the training and test data by using historic

data. The historic data contain all the data that have been used in the past to predict data. It stores both the

dataset and information pertaining them in a repository and ensure that these information are available when

requested for by the scheme evaluation. Thus the test data are usually autonomous when building the learner.

Also, it contains the precondition to be evaluated in order to find the functioning of a learner over fresh data.

This way, a cross validation is used to compute the precision of a predictive model in real life situation. Thus the

cross-validation in a single round helps in partitioning the dataset into required complementary subsets. It then

helps to analyze each of the subsets and then validate the analysis on the subsets. Therefore, to ensure

variability, cross validation should be carried out on the partitioned datasets after which the evaluation results

are computed

Training Data: The training data are the datasets that are used in the experiment for implementing the research.

Usually, they are trained by the training tool such as the artificial neural network before they are used to test the

program.

Test Data: These are the trained data which are used to test the source code after they have been trained. The

real-time defect data sets used in this research. The data sets used in this study are obtained from NASA projects

such as NASA MDP, and other space exploration related projects such as PC1, PC4, CM1, and ground orbiting

satellite such as KC1 and KC3. There are twelve data sets are used to validate our technique. These datasets

were obtained from NASA‟s Metric Data Program (MDP) data repository, available online at

http//mdp.ivy.nasa.gov. The CM1 datasets is obtained from a spacecraft instrument, written in C programming

language. It contains approximately 506 modules. The JM1 dataset is obtained from a predictive system project,

written in C++. It contains approximately 10879 modules. The KC1 data is obtained from a science data

processing project, written in C++. It contains approximately 2108 modules. The PC1 data is obtained from a

science data processing project coded in C++. It contains 1108 modules. As seen in Table 1, these datasets

varied in the percentage of defects modules, with CM1 dataset having the least percentage of defects in its

modules and KC1having the largest percentage of defects.

Learning Tool: The learning tool used is the artificial neural networks. A neural networks model is a multi-layer

perception model that produces a value between 0 and 1. Usually, the predictors are in one layer, with each

predictor as one neuron, and the output is in one layer. A non-linear function is used to combine values to

connect layers and to produce the output. For a new observation, the predictors‟ values are placed on the outer

layer and the predicted value between 0 and 1 is produced at the output neuron. Each artificial neuron is a

simple processor with the ability to add all weighted inputs and then apply a mathematical transformation to

generate an output.

Statistical Tool: Bayesian Networks is used as the statistical tool for performing statistical data. A Bayesian

network is a graph together with an associated set of probability tables. The nodes represent uncertain variables

and the arcs represent the causal/relevance relationships between the variables. The variable „effective KLOC

implemented‟ represents the complexity-adjusted size of the functionality implemented. As the amount of

functionality increases the number of potential defects rises. This is due to increase in the size and complexity of

the source code.

The „probability of avoiding defect in development‟ depends on „defects in‟ given total potential defects. This

number represents the number of defects (before testing) that are in the new code that has been implemented.

This number „defect in‟ the code determines the probability of finding defect in the code which therefore

determines the number of defects found in the software.

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 77

Testing: Testing is carried out after the data sets have been trained to determine whether they have defects or

not. After testing the software projects, the number of defects found in each module is recorded and the total

number of defects found in each project is also recorded and some values are the computed based on these

findings.

3.3 Defect Predictor
The defect predictor is built to ensure that it can accurately predict the defects by ensuring that the false positive

(fp) and false negatives (fn) are reduced to small fractions. When building the predictor, the following should be

taken to consideration.

1). A learning scheme is selected based on the performance results. This scheme is then used to predictor the

defects by ensuring that the defects are properly classified.

2). A predictor is constructed with the required relevant learning scheme as well as the entire statistics. The

learning scheme contains the neural network which is used to train the datasets to ensure that they are well

utilized.

3). The datasets must be preprocessed in a similar way as earlier performed by historical data and the purpose of

constructed predictor seems to predict software defects using all the preprocessed data.

3.4 Bayesian Network Classifier

The Bayesian classifier is a simple probabilistic classifier based on applying Bayesian theorem with strong

independence assumption. The underlying probability model is an independent feature model. The Bayesian

classifier is efficiently trained in supervised learning due to the precise nature of the probability model.

Maximum likelihood methodology is used to find the parameter estimates in the Bayesian model. When the

machine learning techniques are used to create functions from the training data, it is called supervised learning.

The statistical parameters in a dataset is derived and this is called Maximum Likelihood Estimation (MLE).

Based on interpretation of Bayesian probability and in accordance with Bayesian theory, a Bayesian classifier

states that the occurrence or nonoccurrence of a feature is non- linked in any way to the occurrence or

nonoccurrence of any other feature.

Thus in a supervised learning problem, if an unknown target function

f : X → Y or equivalently P(Y|X) is to be approximated, assume Y is a Boolean-valued random variable, and X is

a vector containing n Boolean attributes. In other words, X = (X1, X2, …, Xn), where Xi is the Boolean random

variable denoting the i
th

 attributes of X.

Applying Bayes rule, it is learnt that P(Y = yi|X) can be represented as:

 P(Y = yi|X = xk) = (3.1)

Where ym denotes the m
th

 possible value for Y, xk denotes the k
th

 possible vector value for X.

The Bayesian classification algorithm assumes the attributes (X1, X2, …, Xn) are all conditionally independent

of one another, given Y. the value of this supposition is that it radically simplifies the representation of P(X|Y),

and the problem of approximating it from the training data.

Thus we write P(X|Y) to denote the probability of event X (an hypothesis) conditional on the occurrence of

some event Y (evidence). If we are counting sample points, we are interested in the fraction of events Y for

which X is also true. From this it should be clear that (with the comma denoting the conjunction of events), we

have

 P(X|Y) = (3.2)

This is often written in the form

 P(X, Y) = p(X | Y)p(y) (3.3)

and referred to as the “product rule.” It is important to realize that this form of the rule is not, as often stated, a

definition. Rather, it is a theorem derivable from simpler assumption.

The Bayesian theorem can be used to tell us how to obtain a posterior probability of a hypothesis X after

observation of some evidence Y, given the prior probability of X and the likelihood of observing Y were X to be

the case:

 P(X|Y) = (3.4)

This simple formula has immense practical importance on a domain such as diagnosis. It is often easier to elicit

the probability, for example, of observing a symptom given a disease than that of a disease given symptom. Yet,

operationally, it is usually the latter which is required. Thus in its general form, the Bayesian Theorem is as

shown in equation (3.3).

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 78

IV. RESULTS AND DISCUSSION
The real-time defect data sets used in this research shown in table 1. The data sets used in this study are obtained

from NASA projects such as NASA MDP, and other space exploration related projects such as PC1, PC4, CM1,

and ground orbiting satellite such as KC1 and KC3.

Table 1 Data sets used for this study

Data Set No. of Attributes No. of Modules Programming Language

CM1 39 506 C

JM1 21 10879 C++

KC1 21 2108 C++

KC3 39 429 Java

KC4 39 125 C

MC1 39 4621 C

MC2 39 161 C

MW1 39 403 C

PC1 39 1108 C

PC2 39 4505 C

PC3 39 1511 C

PC4 39 1347 C

This NASA database is a repository that stores problems, products, and metrics data. The primary goal of this

repository is to provide project data to the software community. Thus the Metrics Data Program collects artifacts

from a large NASA datasets, generates metrics on the artifacts reports made available to the public. These

datasets contains modules such as functions, subroutine, or methods containing lines of code (LOC) based

metrics, Halstead metrics, and McCabes‟s Complexity measures. The number of defective modules is indicated

in each of the projects.

Fig. 2 A screenshot of Bayesian network after running the Java program

Figure 2 shows a screenshot of the Bayesian network showing the different datasets such as lines of code (LOC)

based metrics, Halstead metrics, and McCabes‟s Complexity measures, etc.

V. CONCLUSIONS
In this paper, we proposed the Bayesian network model for predicting software defects. In the model, certain

software inputs are tested to determine the number of defects in them. Therefore, our program which is

developed in Java programming language is able to count the number of inputs and outputs using certain

parameters and expressions. This is possible when we input query into the network. The program is able to

determine that a query has been supplied, the query type, the various events that takes place at each stage of the

query determination, the choices made and the probability of defects being found or not being found in the

software.

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 79

REFERENCES
[1]. E. E. Ogheneovo, “Software Dysfunctions: Why Do Software Fails? Journal of Computer and Communications,” vol. 2, pp. 25-35,

April, 2014. Available: http://dx.doi.org/10.4235/jcc.2014.

[2]. F. Schull, F. Basili, V. Boehm, W. Brown, P. Costa, M. Lindvall , Port, I. Rus, R. Tesoriero and M. Zelkowitz, “ What We Have

Learned About Fitting Defects,” METRICS’02, IEEE, 2002.
[3]. J. E. Gathey, Jr. (1984) “Estimating the Number of Faults in Code,” IEEE Transactions on Software Engineering, vol. SE10, pp.

459-464, 1984.

[4]. F. Akiyama, “An example of software system debugging. Proceedings of the International Federation for Information Processing
Congress,” Ljubljana, Yugoslavia, pp. 353–379.

[5]. S. Lessmann, B. Baesens, C. Mues and S. Pietsch, “ Benchmarking Classification Models for Software Defect Prediction: A

Proposed Framework and Novel Findings,” IEEE Transactions on Software Engineering, vol. 34, Issue 4, pp. 485-496,2008, DOI:
10.1109/TSE.2008.35.

[6]. T. M. Khoshgoflaar and J. C. Munson, “Predicting Software Development errors Using Software Complexity Metrics, IEEE Journal

on Selected Areas in Communications, Vol. 8, no. 2, 253-264, 1990.
[7]. D. Quinlan and T. Panas, “Source code and Binary Analysis of Software Defects,” CSIIRW, April 13-15, OAK Ridge, Tennessee,

USA.

[8]. A. G. Koru and h. Liu, “An Investigation of the Effect of Module Size on Defect Prediction Using Static Measures,” PROMISE‟05,
May 15 2005, St. Louis Missouri, USA.

[9]. N. Katiyar and R. Singh, “Prediction of Software Development Faults Using Neural Network,” VSRD Int’l Journal of Computer

Science and Information Technology, vol. 1, no. 8, 2011, pp. 556-566, 2.011
[10]. E. E. Ogheneovo, “On the Relationship between Software Complexity and Maintenance Costs,” Journal of Computer and

Communications, vol. 2, pp. 1-16. Available: http://dx.doi.org/10.4236/jcc.2014.

[11]. M. H. Halstead,” Elements of Software Science,” Amsterdam: Elsevier North-Holland, Inc. ISBN 0-444-00205-7, 1976.
[12]. T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineering, vol. SE-2, no. 4, December 1976.

[13]. S. C. Narula and J. F. Wellington, “Prediction, Linear Regression and the Minimum Sum of Relative Errors,” Technometrics, vol.

19, pp. 185-190, 1977.
[14]. Y. Liu, W. P. Cheah, B.-K. Kim and H. Park, “Predict Software Failure-prone by Learning Bayesian Network,” Int’l Journal of

Advanced Science and Technology, pp. 35-42, 2005.

[15]. N. Fenton, M. Neil, W. Marsh, and P. Hearty, “On the Effectiveness of Early Lifecycle Defect Prediction with Bayesian Networks,”
Empir. Software Engineering, vol. 13, pp. 499-537, June 2008. DOI. 10.1007/s10664-008-9072-x.

[16]. L. Radlinski and W. Hoffmann, “On Predicting Software Development Effort Using Machine Learning Technique and Local Data,”

Int’l Journal of Software engineering and Computing, vol. 2, no. 2, pp. 123-136, 2010.
[17]. E. Mendes and N. Mosley, “Bayesian Network Models for Web Effort Prediction: A Comparative Study,” Software Engineering

Journal, IEEE Transactions on Software Engineering, vol. 34, no. 6, pp. 723-737, 2008.

Appendix: Bayesian Network Implementation

Input

Count

22

Output

Count

1

Parameter

Count

425

Expression P(loc_blank|defective) P(branch_count|defective) P(loc_code_and_comment|defective)

P(loc_comments|defective) P(cyclomatic_complexity|defective)

P(design_complexity|defective) P(essential_complexity|defective)

P(loc_executable|defective) P(halstead_content|defective) P(halstead_difficulty|defective)

P(halstead_effort|defective) P(halstead_error_est|defective) P(halstead_length|defective)

P(halstead_level|defective) P(halstead_prog_time|defective) P(halstead_volume|defective)

P(num_operands|defective) P(num_operators|defective) P(num_unique_operands|defective)

P(num_unique_operators|defective) P(loc_total|defective) P(defective)

Query

Type

EnumerationQuery

Query P(+defective|loc_blank=0,branch_count=0,loc_code_and_comment=0,loc_comments=0,cy

clomatic_complexity=0,design_complexity=0,essential_complexity=0,loc_executable=0,ha

lstead_content=0,halstead_difficulty=0,halstead_effort=0,halstead_error_est=0,halstead_len

gth=0,halstead_level=0,halstead_prog_time=0,halstead_volume=0,num_operands=0,num_

operators=0,num_unique_operands=0,num_unique_operators=0,loc_total=0)

Events

Event Choices Probability

loc_blank 0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2,

20, 21, 22, 23, 24, 3, 35, 4, 5, 58, 6, 7, 8, 9

P(loc_blank|defective)

branch_count 1, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25,

26, 27, 29, 3, 31, 33, 35, 37, 39, 4, 42, 49, 5,

51, 53, 54, 6, 67, 7, 8, 89, 9

P(branch_count|defecti

ve)

http://dx.doi.org/10.4235/jcc.2014
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-444-00205-7

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 80

loc_code_and_

comment

0, 1, 11, 2, 3, 4, 5, 6, 7, 8 P(loc_code_and_com

ment|defective)

loc_comments 0, 1, 10, 11, 12, 14, 16, 17, 19, 2, 20, 26, 3, 35,

4, 44, 5, 6, 7, 8, 9

P(loc_comments|defec

tive)

cyclomatic_co

mplexity

1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 20,

22, 25, 26, 27, 28, 3, 34, 4, 45, 5, 6, 7, 8, 9

P(cyclomatic_complex

ity|defective)

design_comple

xity

1, 10, 11, 12, 13, 14, 15, 16, 18, 19, 2, 22, 25,

27, 29, 3, 4, 45, 5, 6, 7, 8, 9

P(design_complexity|d

efective)

essential_comp

lexity

1, 10, 11, 12, 14, 15, 16, 18, 19, 21, 22, 26, 3,

4, 5, 6, 7, 8, 9

P(essential_complexity

|defective)

loc_executable Type0, Type1, Type2 P(loc_executable|defec

tive)

halstead_conte

nt

Type0, Type1, Type2 P(halstead_content|def

ective)

halstead_diffic

ulty

Type0, Type1, Type2 P(halstead_difficulty|d

efective)

halstead_effort Type0, Type1, Type2 P(halstead_effort|defec

tive)

halstead_error_

est

Type0, Type1, Type2 P(halstead_error_est|d

efective)

halstead_length Type0, Type1, Type2 P(halstead_length|defe

ctive)

halstead_level Type0, Type1, Type2 P(halstead_level|defect

ive)

halstead_prog_

time

Type0, Type1, Type2 P(halstead_prog_time|

defective)

halstead_volu

me

Type0, Type1, Type2 P(halstead_volume|def

ective)

num_operands Type0, Type1, Type2 P(num_operands|defec

tive)

num_operators Type0, Type1, Type2 P(num_operators|defec

tive)

num_unique_o

perands

Type0, Type1, Type2 P(num_unique_operan

ds|defective)

num_unique_o

perators

0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 3, 30, 31,

4, 5, 6, 7, 8, 9

P(num_unique_operat

ors|defective)

loc_total Type0, Type1, Type2 P(loc_total|defective)

defective N, Y P(defective)

Probability Tables

loc_blank

P(loc_blank=0|-defective) 87.441860%

P(loc_blank=1|-defective) 57.251908%

P(loc_blank=2|-defective) 3.333333%

P(loc_blank=3|-defective) 3.703704%

P(loc_blank=4|-defective) 63.709677%

P(loc_blank=5|-defective) 7.142857%

P(loc_blank=6|-defective) 3.703704%

P(loc_blank=7|-defective) 3.703704%

P(loc_blank=8|-defective) 6.896552%

P(loc_blank=9|-defective) 3.703704%

P(loc_blank=10|-defective) 48.351648%

P(loc_blank=11|-defective) 3.703704%

P(loc_blank=12|-defective) 6.060606%

P(loc_blank=13|-defective) 40.384615%

P(loc_blank=14|-defective) 22.727273%

P(loc_blank=15|-defective) 3.571429%

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 81

P(loc_blank=16|-defective) 28.888889%

P(loc_blank=17|-defective) 15.789474%

P(loc_blank=18|-defective) 6.250000%

P(loc_blank=19|-defective) 0.000000%

P(loc_blank=20|-defective) 9.375000%

P(loc_blank=21|-defective) 9.677419%

P(loc_blank=22|-defective) 0.000000%

P(loc_blank=23|-defective) 3.571429%

P(loc_blank=24|-defective) 3.448276%

P(loc_blank=25|-defective) 8.823529%

P(loc_blank=26|-defective) 20.588235%

P(loc_blank=0|+defective) 6.744186%

P(loc_blank=1|+defective) 23.664122%

P(loc_blank=2|+defective) 13.333333%

P(loc_blank=3|+defective) 3.703704%

P(loc_blank=4|+defective) 16.129032%

P(loc_blank=5|+defective) 3.571429%

P(loc_blank=6|+defective) 3.703704%

P(loc_blank=7|+defective) 3.703704%

P(loc_blank=8|+defective) 6.896552%

P(loc_blank=9|+defective) 3.703704%

P(loc_blank=10|+defective) 24.175824%

P(loc_blank=11|+defective) 3.703704%

P(loc_blank=12|+defective) 18.181818%

P(loc_blank=13|+defective) 11.538462%

P(loc_blank=14|+defective) 20.454545%

P(loc_blank=15|+defective) 7.142857%

P(loc_blank=16|+defective) 15.555556%

P(loc_blank=17|+defective) 18.421053%

P(loc_blank=18|+defective) 15.625000%

P(loc_blank=19|+defective) 0.000000%

P(loc_blank=20|+defective) 12.500000%

P(loc_blank=21|+defective) 9.677419%

P(loc_blank=22|+defective) 0.000000%

P(loc_blank=23|+defective) 7.142857%

P(loc_blank=24|+defective) 10.344828%

P(loc_blank=25|+defective) 17.647059%

P(loc_blank=26|+defective) 5.882353%

branch_count

P(branch_count=0|-defective) 5.555556%

P(branch_count=1|-defective) 10.869565%

P(branch_count=2|-defective) 7.317073%

P(branch_count=3|-defective) 11.627907%

P(branch_count=4|-defective) 2.857143%

P(branch_count=5|-defective) 5.263158%

P(branch_count=6|-defective) 5.128205%

P(branch_count=7|-defective) 68.387097%

P(branch_count=8|-defective) 2.702703%

P(branch_count=9|-defective) 5.263158%

P(branch_count=10|-defective) 5.555556%

P(branch_count=11|-defective) 2.777778%

P(branch_count=12|-defective) 42.268041%

P(branch_count=13|-defective) 2.857143%

P(branch_count=14|-defective) 2.777778%

P(branch_count=15|-defective) 8.108108%

P(branch_count=16|-defective) 7.894737%

P(branch_count=17|-defective) 33.333333%

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 82

P(branch_count=18|-defective) 2.777778%

P(branch_count=19|-defective) 0.000000%

P(branch_count=20|-defective) 7.894737%

P(branch_count=21|-defective) 0.000000%

P(branch_count=22|-defective) 5.555556%

P(branch_count=23|-defective) 0.000000%

P(branch_count=24|-defective) 10.256410%

P(branch_count=25|-defective) 8.108108%

P(branch_count=26|-defective) 0.000000%

P(branch_count=27|-defective) 0.000000%

P(branch_count=28|-defective) 2.777778%

P(branch_count=29|-defective) 8.333333%

P(branch_count=30|-defective) 5.555556%

P(branch_count=31|-defective) 8.108108%

P(branch_count=32|-defective) 15.555556%

P(branch_count=33|-defective) 0.000000%

P(branch_count=34|-defective) 19.642857%

P(branch_count=0|+defective) 2.777778%

P(branch_count=1|+defective) 17.391304%

P(branch_count=2|+defective) 12.195122%

P(branch_count=3|+defective) 11.627907%

P(branch_count=4|+defective) 2.857143%

P(branch_count=5|+defective) 7.894737%

P(branch_count=6|+defective) 10.256410%

P(branch_count=7|+defective) 10.322581%

P(branch_count=8|+defective) 8.108108%

P(branch_count=9|+defective) 7.894737%

P(branch_count=10|+defective) 2.777778%

P(branch_count=11|+defective) 5.555556%

P(branch_count=12|+defective) 23.711340%

P(branch_count=13|+defective) 2.857143%

P(branch_count=14|+defective) 5.555556%

P(branch_count=15|+defective) 2.702703%

P(branch_count=16|+defective) 5.263158%

P(branch_count=17|+defective) 18.840580%

P(branch_count=18|+defective) 5.555556%

P(branch_count=19|+defective) 0.000000%

P(branch_count=20|+defective) 5.263158%

P(branch_count=21|+defective) 0.000000%

P(branch_count=22|+defective) 2.777778%

P(branch_count=23|+defective) 0.000000%

P(branch_count=24|+defective) 5.128205%

P(branch_count=25|+defective) 2.702703%

P(branch_count=26|+defective) 0.000000%

P(branch_count=27|+defective) 0.000000%

P(branch_count=28|+defective) 5.555556%

P(branch_count=29|+defective) 22.916667%

P(branch_count=30|+defective) 2.777778%

P(branch_count=31|+defective) 2.702703%

P(branch_count=32|+defective) 11.111111%

P(branch_count=33|+defective) 0.000000%

P(branch_count=34|+defective) 21.428571%

loc_code_and_comment

P(loc_code_and_comment=0|-defective) 79.423329%

P(loc_code_and_comment=1|-defective) 57.142857%

P(loc_code_and_comment=2|-defective) 0.000000%

P(loc_code_and_comment=3|-defective) 18.181818%

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 83

P(loc_code_and_comment=4|-defective) 33.333333%

P(loc_code_and_comment=5|-defective) 37.500000%

P(loc_code_and_comment=6|-defective) 10.000000%

P(loc_code_and_comment=7|-defective) 25.000000%

P(loc_code_and_comment=8|-defective) 18.181818%

P(loc_code_and_comment=9|-defective) 10.000000%

P(loc_code_and_comment=0|+defective) 19.528178%

P(loc_code_and_comment=1|+defective) 14.285714%

P(loc_code_and_comment=2|+defective) 0.000000%

P(loc_code_and_comment=3|+defective) 9.090909%

P(loc_code_and_comment=4|+defective) 13.333333%

P(loc_code_and_comment=5|+defective) 12.500000%

P(loc_code_and_comment=6|+defective) 10.000000%

P(loc_code_and_comment=7|+defective) 8.333333%

P(loc_code_and_comment=8|+defective) 9.090909%

P(loc_code_and_comment=9|+defective) 10.000000%

loc_comments

P(loc_comments=0|-defective) 82.380952%

P(loc_comments=1|-defective) 61.458333%

P(loc_comments=2|-defective) 13.043478%

P(loc_comments=3|-defective) 4.545455%

P(loc_comments=4|-defective) 31.707317%

P(loc_comments=5|-defective) 27.272727%

P(loc_comments=6|-defective) 18.518519%

P(loc_comments=7|-defective) 11.538462%

P(loc_comments=8|-defective) 4.761905%

P(loc_comments=9|-defective) 4.000000%

P(loc_comments=10|-defective) 12.500000%

P(loc_comments=11|-defective) 0.000000%

P(loc_comments=12|-defective) 9.090909%

P(loc_comments=13|-defective) 4.545455%

P(loc_comments=14|-defective) 9.090909%

P(loc_comments=15|-defective) 4.761905%

P(loc_comments=16|-defective) 4.545455%

P(loc_comments=17|-defective) 9.090909%

P(loc_comments=18|-defective) 15.384615%

P(loc_comments=19|-defective) 4.761905%

P(loc_comments=20|-defective) 37.288136%

P(loc_comments=0|+defective) 14.603175%

P(loc_comments=1|+defective) 18.750000%

P(loc_comments=2|+defective) 4.347826%

P(loc_comments=3|+defective) 9.090909%

P(loc_comments=4|+defective) 21.951220%

P(loc_comments=5|+defective) 15.151515%

P(loc_comments=6|+defective) 11.111111%

P(loc_comments=7|+defective) 15.384615%

P(loc_comments=8|+defective) 4.761905%

P(loc_comments=9|+defective) 20.000000%

P(loc_comments=10|+defective) 8.333333%

P(loc_comments=11|+defective) 0.000000%

P(loc_comments=12|+defective) 4.545455%

P(loc_comments=13|+defective) 9.090909%

P(loc_comments=14|+defective) 4.545455%

P(loc_comments=15|+defective) 4.761905%

P(loc_comments=16|+defective) 9.090909%

P(loc_comments=17|+defective) 4.545455%

P(loc_comments=18|+defective) 11.538462%

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 84

P(loc_comments=19|+defective) 4.761905%

P(loc_comments=20|+defective) 30.508475%

cyclomatic_complexity

P(cyclomatic_complexity=0|-defective) 16.129032%

P(cyclomatic_complexity=1|-defective) 10.000000%

P(cyclomatic_complexity=2|-defective) 72.108844%

P(cyclomatic_complexity=3|-defective) 7.142857%

P(cyclomatic_complexity=4|-defective) 3.571429%

P(cyclomatic_complexity=5|-defective) 12.903226%

P(cyclomatic_complexity=6|-defective) 3.703704%

P(cyclomatic_complexity=7|-defective) 3.571429%

P(cyclomatic_complexity=8|-defective) 3.571429%

P(cyclomatic_complexity=9|-defective) 45.977011%

P(cyclomatic_complexity=10|-defective) 7.142857%

P(cyclomatic_complexity=11|-defective) 13.513514%

P(cyclomatic_complexity=12|-defective) 40.625000%

P(cyclomatic_complexity=13|-defective) 28.571429%

P(cyclomatic_complexity=14|-defective) 12.195122%

P(cyclomatic_complexity=15|-defective) 21.621622%

P(cyclomatic_complexity=16|-defective) 0.000000%

P(cyclomatic_complexity=17|-defective) 0.000000%

P(cyclomatic_complexity=18|-defective) 8.823529%

P(cyclomatic_complexity=19|-defective) 0.000000%

P(cyclomatic_complexity=20|-defective) 14.285714%

P(cyclomatic_complexity=21|-defective) 3.571429%

P(cyclomatic_complexity=22|-defective) 6.666667%

P(cyclomatic_complexity=23|-defective) 26.666667%

P(cyclomatic_complexity=24|-defective) 29.787234%

P(cyclomatic_complexity=25|-defective) 10.000000%

P(cyclomatic_complexity=26|-defective) 6.666667%

P(cyclomatic_complexity=0|+defective) 3.225806%

P(cyclomatic_complexity=1|+defective) 6.666667%

P(cyclomatic_complexity=2|+defective) 10.884354%

P(cyclomatic_complexity=3|+defective) 3.571429%

P(cyclomatic_complexity=4|+defective) 7.142857%

P(cyclomatic_complexity=5|+defective) 6.451613%

P(cyclomatic_complexity=6|+defective) 3.703704%

P(cyclomatic_complexity=7|+defective) 7.142857%

P(cyclomatic_complexity=8|+defective) 7.142857%

P(cyclomatic_complexity=9|+defective) 25.287356%

P(cyclomatic_complexity=10|+defective) 3.571429%

P(cyclomatic_complexity=11|+defective) 18.918919%

P(cyclomatic_complexity=12|+defective) 20.312500%

P(cyclomatic_complexity=13|+defective) 26.785714%

P(cyclomatic_complexity=14|+defective) 26.829268%

P(cyclomatic_complexity=15|+defective) 10.810811%

P(cyclomatic_complexity=16|+defective) 0.000000%

P(cyclomatic_complexity=17|+defective) 0.000000%

P(cyclomatic_complexity=18|+defective) 17.647059%

P(cyclomatic_complexity=19|+defective) 0.000000%

P(cyclomatic_complexity=20|+defective) 14.285714%

P(cyclomatic_complexity=21|+defective) 7.142857%

P(cyclomatic_complexity=22|+defective) 10.000000%

P(cyclomatic_complexity=23|+defective) 17.777778%

P(cyclomatic_complexity=24|+defective) 17.021277%

P(cyclomatic_complexity=25|+defective) 6.666667%

P(cyclomatic_complexity=26|+defective) 10.000000%

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 85

design_complexity

P(design_complexity=0|-defective) 17.241379%

P(design_complexity=1|-defective) 71.612903%

P(design_complexity=2|-defective) 8.333333%

P(design_complexity=3|-defective) 8.333333%

P(design_complexity=4|-defective) 4.166667%

P(design_complexity=5|-defective) 8.333333%

P(design_complexity=6|-defective) 48.148148%

P(design_complexity=7|-defective) 31.034483%

P(design_complexity=8|-defective) 30.612245%

P(design_complexity=9|-defective) 36.585366%

P(design_complexity=10|-defective) 15.151515%

P(design_complexity=11|-defective) 19.354839%

P(design_complexity=12|-defective) 0.000000%

P(design_complexity=13|-defective) 0.000000%

P(design_complexity=14|-defective) 0.000000%

P(design_complexity=15|-defective) 13.333333%

P(design_complexity=16|-defective) 11.111111%

P(design_complexity=17|-defective) 4.166667%

P(design_complexity=18|-defective) 7.407407%

P(design_complexity=19|-defective) 7.407407%

P(design_complexity=20|-defective) 27.027027%

P(design_complexity=21|-defective) 6.666667%

P(design_complexity=22|-defective) 8.000000%

P(design_complexity=0|+defective) 10.344828%

P(design_complexity=1|+defective) 14.838710%

P(design_complexity=2|+defective) 4.166667%

P(design_complexity=3|+defective) 4.166667%

P(design_complexity=4|+defective) 8.333333%

P(design_complexity=5|+defective) 4.166667%

P(design_complexity=6|+defective) 25.925926%

P(design_complexity=7|+defective) 32.758621%

P(design_complexity=8|+defective) 26.530612%

P(design_complexity=9|+defective) 12.195122%

P(design_complexity=10|+defective) 21.212121%

P(design_complexity=11|+defective) 12.903226%

P(design_complexity=12|+defective) 0.000000%

P(design_complexity=13|+defective) 0.000000%

P(design_complexity=14|+defective) 0.000000%

P(design_complexity=15|+defective) 16.666667%

P(design_complexity=16|+defective) 11.111111%

P(design_complexity=17|+defective) 8.333333%

P(design_complexity=18|+defective) 14.814815%

P(design_complexity=19|+defective) 14.814815%

P(design_complexity=20|+defective) 16.216216%

P(design_complexity=21|+defective) 23.333333%

P(design_complexity=22|+defective) 8.000000%

essential_complexity

P(essential_complexity=0|-defective) 16.666667%

P(essential_complexity=1|-defective) 5.263158%

P(essential_complexity=2|-defective) 10.000000%

P(essential_complexity=3|-defective) 51.724138%

P(essential_complexity=4|-defective) 28.125000%

P(essential_complexity=5|-defective) 13.793103%

P(essential_complexity=6|-defective) 30.000000%

P(essential_complexity=7|-defective) 13.043478%

P(essential_complexity=8|-defective) 0.000000%

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 86

P(essential_complexity=9|-defective) 0.000000%

P(essential_complexity=10|-defective) 0.000000%

P(essential_complexity=11|-defective) 0.000000%

P(essential_complexity=12|-defective) 4.761905%

P(essential_complexity=13|-defective) 17.857143%

P(essential_complexity=14|-defective) 9.523810%

P(essential_complexity=15|-defective) 5.263158%

P(essential_complexity=16|-defective) 5.000000%

P(essential_complexity=17|-defective) 21.428571%

P(essential_complexity=18|-defective) 5.000000%

P(essential_complexity=0|+defective) 12.500000%

P(essential_complexity=1|+defective) 5.263158%

P(essential_complexity=2|+defective) 5.000000%

P(essential_complexity=3|+defective) 18.965517%

P(essential_complexity=4|+defective) 18.750000%

P(essential_complexity=5|+defective) 27.586207%

P(essential_complexity=6|+defective) 13.333333%

P(essential_complexity=7|+defective) 13.043478%

P(essential_complexity=8|+defective) 0.000000%

P(essential_complexity=9|+defective) 0.000000%

P(essential_complexity=10|+defective) 0.000000%

P(essential_complexity=11|+defective) 0.000000%

P(essential_complexity=12|+defective) 14.285714%

P(essential_complexity=13|+defective) 21.428571%

P(essential_complexity=14|+defective) 9.523810%

P(essential_complexity=15|+defective) 5.263158%

P(essential_complexity=16|+defective) 10.000000%

P(essential_complexity=17|+defective) 17.857143%

P(essential_complexity=18|+defective) 10.000000%

loc_executable

P(loc_executable=0|-defective) 81.322957%

P(loc_executable=1|-defective) 33.333333%

P(loc_executable=2|-defective) 50.000000%

P(loc_executable=0|+defective) 18.547341%

P(loc_executable=1|+defective) 61.111111%

P(loc_executable=2|+defective) 33.333333%

halstead_content

P(halstead_content=0|-defective) 81.432361%

P(halstead_content=1|-defective) 57.575758%

P(halstead_content=2|-defective) 37.500000%

P(halstead_content=0|+defective) 18.435013%

P(halstead_content=1|+defective) 39.393939%

P(halstead_content=2|+defective) 50.000000%

halstead_difficulty

P(halstead_difficulty=0|-defective) 85.446686%

P(halstead_difficulty=1|-defective) 43.529412%

P(halstead_difficulty=2|-defective) 37.500000%

P(halstead_difficulty=0|+defective) 14.409222%

P(halstead_difficulty=1|+defective) 55.294118%

P(halstead_difficulty=2|+defective) 56.250000%

halstead_effort

P(halstead_effort=0|-defective) 80.690537%

P(halstead_effort=1|-defective) 37.500000%

P(halstead_effort=2|-defective) 40.000000%

P(halstead_effort=0|+defective) 19.181586%

P(halstead_effort=1|+defective) 50.000000%

P(halstead_effort=2|+defective) 40.000000%

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 87

halstead_error_est

P(halstead_error_est=0|-defective) 81.001284%

P(halstead_error_est=1|-defective) 25.000000%

P(halstead_error_est=2|-defective) 50.000000%

P(halstead_error_est=0|+defective) 18.870347%

P(halstead_error_est=1|+defective) 66.666667%

P(halstead_error_est=2|+defective) 25.000000%

halstead_length

P(halstead_length=0|-defective) 81.056701%

P(halstead_length=1|-defective) 35.714286%

P(halstead_length=2|-defective) 40.000000%

P(halstead_length=0|+defective) 18.814433%

P(halstead_length=1|+defective) 57.142857%

P(halstead_length=2|+defective) 40.000000%

halstead_level

P(halstead_level=0|-defective) 75.981162%

P(halstead_level=1|-defective) 97.260274%

P(halstead_level=2|-defective) 83.333333%

P(halstead_level=0|+defective) 23.861852%

P(halstead_level=1|+defective) 2.054795%

P(halstead_level=2|+defective) 8.333333%

halstead_prog_time

P(halstead_prog_time=0|-defective) 80.690537%

P(halstead_prog_time=1|-defective) 37.500000%

P(halstead_prog_time=2|-defective) 40.000000%

P(halstead_prog_time=0|+defective) 19.181586%

P(halstead_prog_time=1|+defective) 50.000000%

P(halstead_prog_time=2|+defective) 40.000000%

halstead_volume

P(halstead_volume=0|-defective) 80.897436%

P(halstead_volume=1|-defective) 27.272727%

P(halstead_volume=2|-defective) 50.000000%

P(halstead_volume=0|+defective) 18.974359%

P(halstead_volume=1|+defective) 63.636364%

P(halstead_volume=2|+defective) 25.000000%

num_operands

P(num_operands=0|-defective) 80.976864%

P(num_operands=1|-defective) 30.769231%

P(num_operands=2|-defective) 50.000000%

P(num_operands=0|+defective) 18.894602%

P(num_operands=1|+defective) 61.538462%

P(num_operands=2|+defective) 25.000000%

num_operators

P(num_operators=0|-defective) 81.161290%

P(num_operators=1|-defective) 33.333333%

P(num_operators=2|-defective) 40.000000%

P(num_operators=0|+defective) 18.709677%

P(num_operators=1|+defective) 60.000000%

P(num_operators=2|+defective) 40.000000%

num_unique_operands

P(num_unique_operands=0|-defective) 81.973684%

P(num_unique_operands=1|-defective) 35.483871%

P(num_unique_operands=2|-defective) 50.000000%

P(num_unique_operands=0|+defective) 17.894737%

P(num_unique_operands=1|+defective) 61.290323%

P(num_unique_operands=2|+defective) 25.000000%

num_unique_operators

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 88

P(num_unique_operators=0|-defective) 44.067797%

P(num_unique_operators=1|-defective) 58.974359%

P(num_unique_operators=2|-defective) 16.666667%

P(num_unique_operators=3|-defective) 12.195122%

P(num_unique_operators=4|-defective) 34.693878%

P(num_unique_operators=5|-defective) 17.073171%

P(num_unique_operators=6|-defective) 9.523810%

P(num_unique_operators=7|-defective) 2.631579%

P(num_unique_operators=8|-defective) 8.108108%

P(num_unique_operators=9|-defective) 8.571429%

P(num_unique_operators=10|-defective) 2.857143%

P(num_unique_operators=11|-defective) 3.030303%

P(num_unique_operators=12|-defective) 40.845070%

P(num_unique_operators=13|-defective) 5.714286%

P(num_unique_operators=14|-defective) 2.941176%

P(num_unique_operators=15|-defective) 3.030303%

P(num_unique_operators=16|-defective) 79.878049%

P(num_unique_operators=17|-defective) 3.125000%

P(num_unique_operators=18|-defective) 2.941176%

P(num_unique_operators=19|-defective) 42.105263%

P(num_unique_operators=20|-defective) 60.439560%

P(num_unique_operators=21|-defective) 58.426966%

P(num_unique_operators=22|-defective) 48.648649%

P(num_unique_operators=23|-defective) 35.616438%

P(num_unique_operators=24|-defective) 58.947368%

P(num_unique_operators=25|-defective) 47.945205%

P(num_unique_operators=26|-defective) 35.714286%

P(num_unique_operators=27|-defective) 37.704918%

P(num_unique_operators=28|-defective) 32.075472%

P(num_unique_operators=29|-defective) 26.000000%

P(num_unique_operators=30|-defective) 21.739130%

P(num_unique_operators=31|-defective) 12.820513%

P(num_unique_operators=0|+defective) 5.084746%

P(num_unique_operators=1|+defective) 2.564103%

P(num_unique_operators=2|+defective) 20.833333%

P(num_unique_operators=3|+defective) 14.634146%

P(num_unique_operators=4|+defective) 4.081633%

P(num_unique_operators=5|+defective) 9.756098%

P(num_unique_operators=6|+defective) 19.047619%

P(num_unique_operators=7|+defective) 18.421053%

P(num_unique_operators=8|+defective) 10.810811%

P(num_unique_operators=9|+defective) 5.714286%

P(num_unique_operators=10|+defective) 11.428571%

P(num_unique_operators=11|+defective) 6.060606%

P(num_unique_operators=12|+defective) 16.901408%

P(num_unique_operators=13|+defective) 8.571429%

P(num_unique_operators=14|+defective) 8.823529%

P(num_unique_operators=15|+defective) 6.060606%

P(num_unique_operators=16|+defective) 1.829268%

P(num_unique_operators=17|+defective) 3.125000%

P(num_unique_operators=18|+defective) 8.823529%

P(num_unique_operators=19|+defective) 5.263158%

P(num_unique_operators=20|+defective) 6.593407%

P(num_unique_operators=21|+defective) 7.865169%

P(num_unique_operators=22|+defective) 10.810811%

P(num_unique_operators=23|+defective) 23.287671%

P(num_unique_operators=24|+defective) 9.473684%

Predicting Software Defects Using Bayesian Network Approach

www.theijes.com The IJES Page 89

P(num_unique_operators=25|+defective) 10.958904%

P(num_unique_operators=26|+defective) 21.428571%

P(num_unique_operators=27|+defective) 13.114754%

P(num_unique_operators=28|+defective) 11.320755%

P(num_unique_operators=29|+defective) 14.000000%

P(num_unique_operators=30|+defective) 13.043478%

P(num_unique_operators=31|+defective) 10.256410%

loc_total

P(loc_total=0|-defective) 81.592689%

P(loc_total=1|-defective) 36.363636%

P(loc_total=2|-defective) 42.857143%

P(loc_total=0|+defective) 18.276762%

P(loc_total=1|+defective) 59.090909%

P(loc_total=2|+defective) 42.857143%

defective

P(+defective) 80.456853%

P(-defective) 19.543147%

